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Optical Matrix Inverter for Phased Array Radar

I. Introduction

The purpose of this study is to investigate new approaches to process the data

collected by phased array antennas to achieve interference canceling. This data processing

need to be performed with severe time constraints. This study was motivated by the fact

that optics is capable of processing data in parallel with very high speeds. The issue we

investigated in this study was the applicability of the optical algebraic processors to such

problems. The advantages gained by using optical systems over their electronic

counterparts are investigated. The limitations of the optical system and their effect on the

interference canceling was studied. In the course of this contract we in-,,estigated the issues

just listed and came to valid and encouraging conclusions which are outlined in the final

section of this report.

I. Interference Canceling

Phased array antennas are used both in radar and communication systems among

many other applications. These systems are used to detect a desired signal. In practical

systems the desired signal will not be the only signal present. Thermal noise, other friendly

and unfriendly interference signals usually are present in surrounding environment. It is

common that the jamming signals be stronger than the desired signal, which presents a

serious problem in detecting the desired signal. It was suggested, to resolve this problem,

that if we can change the antenna pattern in such a way that we introduce a null along the

direction of the jammer, it will cancel it without effecting the ability of detecting the

desired signal [1-5]. This change of the antenna pattern can be achieved by adapting the

weights of the individual sensors to the environment. This adaptation process needs to be

done iising the detected signals. This is the basic idea behind the adaptive phased array



antenna systems. In the following section we show how this adaptation processes can be

achieved.

2.1 Adaptive Phased Array Antennas

In adaptive phased arrays the incoming signal is detected by an array of sensors.

The detected signal is a combination of the target signal plus interference and noise signals.

The system is adjusted in such a way to suppress the interference signals reception without

affecting the desired signal.

In this section we consider the two general cases of interference ranceling: first by

assuming that the interference signal direction is known; secondly by assuming no a priori

information is known about the interference signal.

A. Interference Signal Direction is Known

When the interference signal direction is known the weights wi's of the array can be

chosen to suppress the interference signal. Let the system shown in Fig. 1(a) be used to

demonstrate this adaptation technique. The output signal of the array s(t) is given by I

s(t) = P[(w 1 + w3 ) sin wot + (w2 +w 4 ) sin(t - 0-

+ I[w 1 sin(waot- 0)+ w2 sin(wot - 0-i)

+ w3 sin(wot ± 0) + w4 sin(wot + 0-)] (1)

where

P = the pilot signal,

I = the interference signal, and

0 = the phase shift

2rd si. (2)

To cancel the interference signal and to make the signal s(t) equal to the pilot

signal, we need to solve the following system of linear equations for the weights w. ':
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Figure 1 Basic adaptive array system with (a) signal and noise directions are known,
and (b) no a priori information is assumed.



w + w3 = 1
w 2 + w 4 =O0

sinO = 0(3)
(w 1 + w3 ) CosO- (w2 -w 4 ) sin0= 0 I
(w 2 + w4 ) CosO+(w ! - w3) sin= 0

The size of this system of linear equations depends on the number of sensors in the

array. The number of jammers can make the system under or overdetermined, which are

both time consuming algebra problems.

B. No a priori Information is Known

This is the most general case where we assume no information about jammers. The

system used in this case is shown in Fig. 1(b). Each of the n sensors receives a signal xi(t)

which is in turn multiplied by a variable weight wi. The output signal s(t) is compared

with the desired signal d(t) and their difference, the error signal E(t), is used to determine

the value of wi's. The output of the array is

n

s(t) = 2__ xi(t) wi  (4)

or

s(t) = T 1 (5)

where
Wl ×l(t)

= wi anQ it ,i ( t )

W n S±n(t) '(6)

For digital sampled data

s(j) = T (7)

and

C(j) = d(j) - s(j) = d(j) - k T (8)

4



The optimum value of the weights, wi's, is the one reduces 6(j) to zero or at least minimize

it.

For N samples of data the optimum weights satisfy the following set of systems of

linear equations:
(T = d(1

k~~ d(i(9T.1
w I(N) = (N

The N sets of equations have n unknowns, and usually N >> n, and are inconsistent

and over specified. The optimization problem can be rewritten as

=R - 1  (10)opt x x xd
where

R - (11)

and

e -E (12)

The matrix Rxx is called the covariance matrix, where E{. } is the ensemble average.

Many algorithms are introduced [2] to solve for the weights in Eq. (10). Some of

the popular algorithms are the least mean square (LMS), and the direct matrix inversion

(DMI).

We'll briefly mention the DMI algorithm since it leads to the algorithm introduced

in this paper. Eq. (1.0) cannot be determined exactly using a limited number of samples of

the input data. For practical consideration a small number of samples is detected to be

used in determining w. The estimated value of Eq.(10) can be given by

= ~~ 1 ~(13)
xx xd

where

1x is the sample covariance matrix, and f xd is the sample cross-correlation vector, and

are given by



K

IR , - (J)  ( j )  (14)
j=l

and

K

=x " 1 (j) d(j) , (15)xd=R

j=l

and K is the number of samples. The DMI algorithm determines the inverse of the sample

covariance matrix Rxx ,then from Eq. (13) evaluates k.

I1. Optical Algebraic Processors

Solving systems of linear equations and determining the eigenvalue and the

eigenvectors are only a few of the challenging problems faced by the numerical

computations. The problem of determining the weights for the adaptive phased array as

given by Eq. (13) is solving a system of linear equations. In this case the size of the

matrices involved are very large. Solving a system of linear equations for large matrices is

time consuming because of the computation complexity. Digital computers revolutionized

this field, because of the fast execution of number crunching operations. But still solving a

problem with a matrix of 10001x000 elements takes few seconds, which by our standards, is

a long time.

Optics by its inherent parallelism and speed seems to present a natural choice for

solving this class of problems. Analog optics is very attractive for optical information

processing and computing. As shown in Fig. 2, in the vector-matrix multiplier all the

elements of the vector are processed in the same time. At almost the same time we write x

we do read b. If the optical path length between the input and output planes is 3cm, the

whole operation of the vector-matrix operation can be done in less than 100psec. For

6N=1000, the number of operations needed to perform Ax-b is 0(10 ). Hence, speed of the

processor is 0(10 - 16) sec/operation. This illustrative example gives a sense of the speed of
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the analog optics in performing linear algebra operations. Unfortunately this high speed of

operations is combined with a low accuracy, which is the nature of the all analog systems.

Analog optics is very fast but inaccurate. On the other hand, digital electronics is

very accurate but not as fast as analog optics. Utilizing the advantages of both analog

optics and digital electronics can be achieved in a "compromise" hybrid system. A system

that slows down Lhe processor speed but in return increases the accuracy substantially.

The bimodal optical computer (BOC) introduced by Caulfield, et. al. [6, is based on

this idea of combining the speed of analog optics and the accuracy of digital electronics.

The adaptation problem for the weights xt introduced in Section II, can be rewritten

in the following form, from Eq. (13)

t}X'-, NI = xd '(16)

which can be written as

A-b (17)

where A R
XX

and b =xd

Eq. (16) is a system of linear equations can be solved using the bimodal optical computer.

Consider an NxN matrix A, and NI vectors x and b. Let A and U are given, and

we would like to solve the system of equations given by Eq. (17) for the vector x. This can

be solved by analog optics techniques. The relaxation method introduced by Cheng an

Caulfield [7] can be used to solve Eq. (17) for x. Consider the hybrid system shown in Fig.

3. Assume an initial value for the solution x and write it using the LED's. Then the

vector x is multiplied by the matrix A. The resultant vector v is compared with b by a

difference amplifier. This difference is fed back to correct x. This process of multiplying

the new value of x with A and comparing y to b continues till the difference between v and



b becomes zer.o: Then the value of )4 will converge to the solution of Eq. (17). For a

positive definite matrix A always a convergence to the solution exists. To achieve a

nonnegative definite matrix, we can multiply Eq. (17) from the left by the Iermitian A" of

A. The nvew A11 A is non-nonnegative definite. We will show later that tlhe increase in

condition number this causes need not affect convergence arid that ,.-e ,:in > ,ye the

cquations even if Aif A is singular.

This method in solving a system of linear equations is very rapid. I's speed is

linited only by the speed of the electro-)ptics devices and on the feedback electronics,

which can be in the psec range.

Let us consider now the accuracy of the system. In writing both A and x on the

optical mask (it can be a photographic film or a spatial light modulator) and the LED

array, a considerable amount of error will exist because of the nature of these analog

devices. Also reading the vector b on the photodiode array cannot be done exactly.

Therefore, the system in Fig. 3 did not solve the system in Eq. (17) but instead the system

given by

A0x 0 = b0.  (18)

where the subscript zeros indicate inaccuracies in the optics and electronics. The solution
-*-

x0 of Eq. (18) can be refined to get the vector x using the following algorithm:

(a) Solve the system in Eq.(18) using the analog optical processor for x0.

(b) Store the solutions x0 to a high accuracy with the digital processor. Use a

dedicated digital processor to calculate the residue

r = b -Ax 0 = A(x- x0 )= a . (19)

(c) Use the optical analog processor to solve the new system of linear equations

A 0y 0 = sr ,  (20)

where y = s Ax and s is a "radix," or scale factor, chosen to good use of the dynamic range

of the system.
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Figure j The bimodal optical computer used in solving a system of linear equations.



(d) Use the digital processor to refine the solution x0 for xlI

x1  + ±Ax. (21)

If the refined solution xis accurate enougho , terminate the iterations. Otherwise, return to

(b), (c), and (d) for a more refined solution. This system which implements the algorithm

outlined above is shown in Fig. 3.

The convergence and speed of the solution for the system of linear equations is

studied and reported by Abushagur and Caulfield [8]. The convergence of the iterative

solution depends or. two main factors. First, is the condition number of the matrix

A0 ,,.A 0 ). The smaller condition number the faster it will converge. Secondly, on the

error involved in reading and writing of A, x and b using the electro-optic devices. The

higher the accuracy in representing these parameters the faster the convergence will occur.

The condition number of the matrix is a critical factor in the convergence of the

solution. In representing the matrix A by an optical mask, an error will be added to it.

The inaccuracies in representing the matrix A changes the values of the matrix elements

a. .'s. These variations in the matrix elements change the condition number of the matrix.1J

Let us represent the mask's matrix A in the following form
0

A0 =A +E, (22)

where E is an error matrix. The error matrix E is generated using Gaussian statistics, with

standard deviation, oE '

The effect of the error matrix E on the condition number of the optical mask's

matrix is demonstrated in Fig. 4. In Fig. 4(a), a matrix A with condition number of 60 is

considered. The coefficients of the matrix are normalized such that the maximum aij is

equal to the unity. The condition number of A0 plotted as a function of the standard

deviation of the error matrix, crE ' The condition number of the matrix A0 tends to

decrease by the increase of u E, especially for large o-E. In Fig. 4(b) a matrix A with

condition number 300 (an ill-conditioned), the condition number decreased significantly

1 1
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Fig. 4 The condition number of the matrix's mask x(Ao), as a

function of aEt for (a) X(A)-60, and (b) X(A)u300.
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throughout the range considered of oe. Thus, if A is an ill-conditioned matrix, the mask's

matrix can very well be a better conditioned one. Of course, in this case when we solve the

svstern give in Eq. (18) A0 will be different from the original A. Hence, we solve a better

conditioned systern for the approximate solution xo, and then we refine using the algorithm

outlined above.

Now, let us consider the effect of the condition number on the convergence of the

solution. The condition number is the determining factor in the accuracy of the solution of

the system of equations.

Hence, for a matrix with a large condition number, the first iteration of the solution

with a limited accuracy computer will be highly inaccurate. This leads to the result that

the larger the condition number the larger number of iterations needed for the convergence

of the solution. To demonstrate this result, we ran a computer simulation of our bimodal

optical computer. The simulated BOC is used to solve a system of linear equation with a

16 bit resolution. The matrix A, was generated randomly using Gaussian statistics. An

error matrix E, with an error of 1% of that of the maximum coefficient of the matrix A,

and then added to A to generate A0 as in Eq. (22). An error of 1% also used in reading x0

and in writing b0 . In each case we computed the condition numbers of the matrix and its

mask. The number of iterations required for convergence of the solution to the specified

accuracy was determined for each case. The iterations were terminated if they exceeded 25

or r(k+1)1 /1 r(k)ll> 1, which is the condition for the solution divergence. The number of

iterations, NJ, required for convergence of the solution with 16 bit accuracy is plotted as a

function of the condition number )((A0 ) in Fig. 5. In these experiments it is clear that the

number of iteration increases with the increase of the condition number.

The condition number, as shown above, is one of the determining factors for the

number of iteration required for convergence of the solution of the system of equations. It

is also shown in Fig. 4 that the condition number of the optical mask's matrix decreases by

the increase of the standard deviation of the error matrix E.

13
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The influence of the standard deviation of the error matrix, E, on the convergence of

the solution is shown in Fig. 6. The number of iteration, NI, increases with the increase of

7E, This decrease in the convergence rate is expected because for large GE's the matrix A0

is quiet different from A. The important result demonstrated in Fig. 6 is that even with an

error up to 50/c in writing the matrix A in the optical mask, convergence is still achieved.

The result is very important in realizing this algorithm by analog optics. In

representing the matrix A by an optical mask always an error will exist. An error of 1% is

quite hard to achieve in this representation using our current technology. In the present

state-of-the-art technology an accuracy of 2 to 3%; in writing the matrix A is within our

reach. This accuracy does not sacrifice the convergence of the solution.

The above results show that the Bimodal Optical Computer can solve a system of

linear equations with very high accuracy. This accuracy can be achieved using IO devices

that have limited accuracy. The digital computes are capable of achieving high accuracy

solution for all the cases considered above. So, what is the real advantage of introducing

this new class of computers? Speed, is what we are after. An analysis of the speed of the

CO. shows that for it to be more faster than the digital computer the following condition

should be satisfied [81

Ap AI > > 1, (23)

where

2[N /6) + N2(1 -K - NK] (24)

p K

A I = TD1/T.\1, (25)

K = I0/ID , (26)

N = the size of the matrix (27)

15
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10 = the number of iterations needed for the convergence of the solution to the specified

accuracy using the BOC.

ID = the number of iterations needed for the convergence of the solution using tile digital

computer,

the time required to perform one digital operation, and

l =the time renuired to solve A x0 = b0 using the analog processor.

The speed advantage depends on the size of the matrix, N, and the speed of the

electronic and electro-. 9 ptic devices used in the BOC. The factor A is plotted in Fig. 7 as
p

a function of N, for a set of values of K. It is quiet clear that A is very large 0(103) for

moderately large values of N.

The values of TID1 and TA1 can be compared using approximate values using

current data.

,Al 2 tsec (27)

TD1 1 gsec for a microcomputer, (28)

and

TDI lf 1 nsec for a CRAY2. (29)

The factor A A is plotted in Fig. 8 as a function of N using the data given by Eqs.

(27) and (29). The advantage in speed is very large and the condition of eq. (23) is

satisfied for N>50.

This advantage in speed of the BOC over the existing digital computer makes it a

very attractive computing machine, and shows the potential of this class of hybrid systems.

W. Impelmenting the BOC

The BOC was built in our laboratory has three main parts as shown in Fig. 3. The

optical system, the electronic circuit, and the digital processor. The optical system consists

of the fully parallel matrix-vector multiplier. Light from the LED's representing x

components are spread vertically by planner waveguides onto the columns of the matrix
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mask. The tiansmitted light is summed row wise by using another set of planner

waveguides and detected by photodiodes which represent the output vector b.

The electronic circuit acts as a feedback loop to correct for the input light of the

LED's, until a solution i reached. The solution x will then be read and stored by the

digital processor. Figure 8 shows the electronic circuit used for the feedback loop.

The A/D and D/A conversion from and to the electronic circuit are performed by

the digital processor.

In this section we present the experimental results for solving a system of linear

equations Ax = b using the BOC, where A,b, and x are all positive.

The Log of the error and that of the residue are plotted versus the number of

iterations. The error and the residue are defined as,

Error = )B(x-x k )J/JlxJ (30)

-k

Residue=1lr 11 (31)
-' -k kth

Where 11.1l, is the Enclidean norm, x is the exact solution, x is the k iteration
' k k th

solution, and r is the k iteration residue.

Since we are dealing only with positive numbers in this paper, we used the absolute

value of r to solve Eq.(2), then we set:

x(n+1) = -(n) + (32)

when all the components of r are positive. And
= ;() (33)

if all the components of r are negative. We reject the iteration when the components of r

have different ,s;gns and take the previous one. By rejecting some iterations we are actually

rejecting some corrections which will slow the cOnvergence process.

In all experiments performed, the iteration process is stopped when a 16 bit

accuracy is reached. Fig 9 shows that the BOC started almost 307% error and it needed 6
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iterations to converge to 16 bit accuracy. In Fig lU(a) 130C started with iilmost I I0%

error, and the number of iterations needed was 21. Fig 1 i(b) shows the Log of the residue

as a function of the number of iterations. The fluctuations depicted by Figs. 10(a) and (b)

is due to the rejection method used in the. experiments.

4.1 Effect of Calibration

The analog optical system error is a major factor in the rate of convergence of the

BOC. If that error is reduced, then the convergence is much faster. In order to illustrate

this, the same problem has been solved twice with two different accuracies of the optical

system. The analog optical system's error in the first time was 50/, and it was 30% in the

second time. Twenty one iterations were needed by BOC to converge to the 16 bit accuracy

for the first case. For the second case the number of iteratlwns was reduced to 12. These

results are plotted in Fig 11.

4.2 Reliability of the System

System reliability for convergence have been tested and verified by solving the same

problem several times, under different conditions. Results show that, when the BOC is

used, to solve a problem several times, the convergence rate will not be exactly the same

for all the cases. However, the number of iterations needed by the BOC to converge to a

certain accuracy is almost the same. Fig 12 shows three different paths of convergence for

the same problem. The BOC needed 13 iterations in the first run, !1 iterations in the

second, and 11 in the third.

4.3 Convergence of the Singular Matrix

Solving a system of linear equations with a singular matrix A is ene of the problems

that cannot be solved using conventional digital computer techniques. Singular matrices

have a condition number that is equal to infinity, so their inverse does not exist, also they
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done three different times, done twice for a singular matrix A.



have infinite solutions. However, the 130C can be used to solve such systems 191. The

130C converges much faster when A- is singular, bec.,uso a nonsingular matrix ,;ill have a

unique solution. Due to the infinite solutions that a singular matrix has, the BOC

produces different solution each time we try to solve the same problem again. Fig 13 shows

the BOC convergence for a singular matrix.

V. Using the BOC for Phased Arrays

It is shown the previous sections that the BOC is capable of large ill-conditioned

linear systems of equations very rapdilv. This makes the BOC a unique system in

processing of phased array data. In this section we show some simulation results using the

BOC for the weight adaptation of a phased array.

Two simulation experiments are presented in this section. In the first experiment

we used a fiue element array, and assumed the directions of the jammers are known. In the

second experiment a 2 element array is used and no a priori information is assumed.

In Fig. 14 the 5 element array pattern is plotted as a function of the angle, ;f,. Fig.

1,4(a) shows the array pattern before adaptation. In Fig. 14(b) the pattern after adaptation

is shown for a jammer at 450 . The array pattern after adaptation has reformed in such a

way to null the jammer signal. In Fig. 14(c) four jammers are considered at 450, 800, 1200

and 1500, the array pattern is again reformed to null all the jammers signals reception.

In Fig. 15 the BOC was used to solve the adaptation problem assuming no a prliorl

information about the interference signals. Fig. 15(a) shows the t 'o--elcment array

pattern before adaptation. In Fig. 15(b) to (d) the pattern is plotted for a single jammer

placed at 30, 450 and 60 , respectively. In all these plots the array adapted to cancel the

int(,rferencc signal in each of the given cases. In all of the above results the jammer signals

is considered to be of the same strength as the desired signal. and the convergence of the

soluti on obtained in less than five iterations A%]so the comdition number of the R isxx
betw~eea 10 i andim
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Figure-.', Phased array pattern for 5 elements, (a) before adaptation, (b) adapted
pattern for a jammer at 450, and (c) adapted pattern for four jammers at
450, 800, 1200 and 1500.
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Figure I3 Two element phased array p~attern (a) before adaptation, (b) to (d) adapted
patterns for single jammers at 30O), 450 and 600, respectively.
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VI. Conclusions

itybrid optoclectronic processors were demonstrated to be used for processing the

aIa ptive phased arrays data. These processors were shown to have the high accuracy of
(i gital processors while are faster in solving large systems of linear equations. In this

particular applicati,)n of the bim-odal optical computer considered here, it has been shown

that the BO is suitable for the adaptation processes of the weights. The interference

cancel1ing was achieved even with the presence of the errors in the analog optical processor.

xperi mental results reported here confirms the theoretical predictions.

For future work the BOC can be implemented to do real time adaptation of the

weights. Also other algorithm adaptation can be considered.
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A Bs'RACT

A* novel systein fur soi vi ng systemns of nonlinear equiations i.- propose(!. I i; 1(eoll!
Jorwi thins are introduced A speed analysis oif lie two differenit al Eon th-zus iS- ;rSLI 4.

('ornpared withi the speed of their digital cormuter counter part:- A -,r,at a(Ivant acei~ st- d
shown for lareQe Size problems~.

1. INTruoDUCTION

Systems of nonlinear equations arise in the process of solving m rany' physical probleims.- Theyv
are a very i. nportant class of mathematical problems5. Iterative methods are used to solve suJc!.
problems.

In this paper we propose a new method for solving this class of nonlinear problonm u-1-i~i
optical processors. In Section 2 the iterative methods used in solving nonlinear svst Tm.

equation is reviewed. In Section 3 the optical implementation is proposed usingz two Oif:rc:.
algorithms. The speed analysis of the two algyoithms is given in Section 4. In so?(- ien
conciusions and final remarks are drawn.

2. NEWTON's METHOD

Systems of linear equations are given as follows

4 4

Ax =-b

where A is an n x n matrix. x and b are n x1 veciors. In these ytesA and 1) amix : m x
the solution of the sy,,stem is unknown.

Nonlinear syscteins of ecollations can be represent ed 5Y

f (A) =0

or

[ n~; I : I -0
SPIE Val 936 Advat'ras n' Oot4(~,qr ~rs~oIIf 8 0
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where fi's are nonlinear functions of x

One of the methods used in solving for x in the nonlinear system of equations is Newton's
method. I-or a single nonlinear equation, an initial solution, Xo, of the equation is assumed, and
the (k+1)th iteration of the solution is given by( 1

Xk+1 : Xk (fk')-1 fk (3)

where

For a system of nonlinear equations, Eq. (3) can be rewritten as

I k+1  k-(J0 -1 'k  (5)

where

f ((6)

and J is the Jacobian matrix.

I ai.

pJk)-1 'k = ek (7)

.'.,ie.!

Jktk = k (8)

P.o. i, i~s a ,.-qtpm of linear equations to be solved for ek, which is the correction needed for the
(k+[)th soiution iteration. The algorithm for solving the system of nonlinear equations wilt be as
'.ollow .:

Assume a solution A.

ii) Compute the nxl vector Ik and the nxn matrix Jk
iii, Solve the linear system of equations Jkek = Ik for Ok

v Compute the refined solution Aik = -k

v) ('!ieck if the norm Illk,1- IkI < c stop, otherwise go back to step (ii). C is the
allowable error.

3. OPTICAL, IMPLEMENTATION

The iterative altorithrm introduced in Section 2 requires 0(n3) number of operations when
used with convernti, rial digital computer. The most expensive part, of the algorithm is step (iii)
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to solve a system of linear
equations. In previous
publications( 2-4 we have
proposed and analyzed a hybrid LED PHOTODWE

optoelectronic processor, the 'A
Bimodal Optical Computer
BOC, capable of solving linear
systems of equations accurately
and rapidly. In this section we
modify that system to be used
to solve systems of nonlinear
equations as shown in Fig. 1.
We propose two different
algorithms, the first utilizes the
use of the analog processor to
solve the system of equations
(8) approximately, and the
second to use the BOC to solve J PWcE !j.

the system of equations (8)
e-xactly (within the specified Fig.1 Block diagram of the hybrid optoelectronic system.
accuracy).

3.1 ttybrid Analog Optical Processor

In this system we use the optical analog processor to solve Eq. (8) approximately. For this
system we introduce the following algorithm:

a) Use the digital processor to guess an initial solution Xo.
b) Use the digital processor to compute both the vector Ik and the matrix Jk.

c) Use the optical analog processor to solve the system do to = To for ', approxmatoly,
where the superscript o's denote inaccuracies in optics or electronics.

d) I'se the digital processor to read t and compute the refined solution Ak,= -

e) Check if the norm 1lk- - ?kI < c stop, otherwise, go back to step (b) and recycle.

3.2 Hybrid BOC Processor

In this system the BOC is used to solve Eq.(8) exactly. For this system we inrroduc the
following algorithm:

.4

a) Use the digital processor to guess an initial solution Xo.

b I-Use the digital processor to compute both lk and the matrixkJ

c) Use the BOC to solve the system Jk Ck = 1k, exactly for Ck.

d) Use the digital processor to read ek and compute the refined solution h, - .
e) Check if the norm 11k0i - TkO < ( stop, otherwise, go back to step (h) and recycle.

SPIE Vol 936 A &,ances m Ovorcal nformtion Process/nq IN (1988) ' 3 1



4. SPEED ANALYSIS

The foliowing speed analysis is based on a system of linear equations with size. n.

4.1 I)igital Processor

The total time required, TDT, to solve the system of nonlinear equations usine a

(:onventional di!rital processor is given by

3

TDT [--- +2n(n+l)ITL)lND

1D1 the time needed to do one digital operation (e.g., a multiplication),

Ind

ND the number of iterations needed for the solution convergence.

1.2 Hybrid Analog Optical Processor

The total time required, TOA' to solve the system of nonlinear equations using the processor

intI-oduced in Section 3.1 is given by

TOA = [n(n+2)TDl + TA1] NA (10).

th- " required for the optical analog processor to solve the system of linear
rquations (8) approximately,

N - the number of iterations required for the solution convergence.

.4 3 Hybrid 13OC Processor

TlE to[,al time required, T to solve the system of nonlinear equations using the processorOBI
;ntroduced Jji S-ction 3.2 is given by

T0 1 3 = [2n(n+l)TD + T All IND '31N

1B the number of iteration needed for the BOC to solve Eq. (8) to the specified accuracy
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4.4 Speed Advantage

It is of ereat interest to determine what is the break even point for the optical processor
proposed to be faster than the digital processors. This condition is defined by

TDT > TOA (12)

and

T DT > T O B .(13)

From Ecs. (9) to (11) the conditions (12) and (13) can be written as

n (n/3+ ) x (TDI) > 1 (14)

or

AA) 1 (15(
ni t

for the hybrid analog processor. where

'A = NA/ND. (16)

And for the hybrid BOC processor

3/3-2n(n+I)(IB-1) ( TD1)
[ 3x ' i1

n B

or
Bn x At "()

Where

A n2(n /3+1) 9)
n - IA

n 3/3 - 2n(n+l)(IB- 1)
B n - --- --T

B

and

At D l 21)
Al

The numbr of iterat iops. IA and I , usually are in the range of I to 0 I . r; tins. A, and l3 ,

are problem (ifpendent, and are much larger than 1 for large values of n. ) ,e wh(o- hand. At

depends on the speod of tho analog processor for s oI vin, a ,, ste"r1 (of ci i(Ar I 'tt i)O
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;n the ranitev of pscc. But since the miatrix Jk need to he Updated eVfY vcycle. wr~iting thue 1natr.%
J k Onl the SLMI becomes the bottleneck of the processor speed. With todays techniolo ,,v wrliing
:nIarrix Onl an SLM may take a few milliseconds. So A, is much iess than 1. In Li.2(a) andlb

,he Log (A,,) and Lug (B,,) are plotted in ternis of the system size. n,. respectivelvy. 'Ihe rtoA
I. fu1r n -_10, while A. > 1 for n -_ 60 and 120. fur 10 an 20rs'tiey or the At. ratio ii.

t range of 10-3, we can have a speed advantage for the hybrid analog optical processor for nl >
50. aiid for the hybrid 130C processor for n > 120.

r yn

71 _

*A? WK MAT= WK.

Fig.2 Plot of log of the ratio (a) A~ of Eq.( 19). and

(b) 13n of Eq.(2O), in terms of the size of the mnatrix .

Again this ratio At. depends mainly on how fast we can write a matrix on the SLM. By the

utiton of faster SLM's the speed advantage can be gained for smaller values of n.

5. CONCLUSIONS

NO new hybrid opto electronic processors are introduced for solving systemrs of nonlinear
e(qua Li Ilie speed of the two processors is analyzed and compared with the speed of digital
:)rocessor:< it, is shown that the main factor of the speed limitation is the speed the SLM's used to

writ th marixon.Wit th exstig SLM's a speed advantage can be gained for n>100.
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ABSTRACT

Hardware and software design of the Bimodal Optical Computer (BOC) and its
implementations are presented. Experimental results of the BOC for solving a system of linear
equations Ax = b is reported. The effect of calibration, the convergence reliability of the BOC.
and the convergence of problems with singular matrices are studied.

1 .INTRODUCTION

Analog optical systems are becoming very attractive in the area of signal processinc i,:, use
of their ability to process in parallel two dimensional data very rapidly. However, analoe r. -
systems have low accuracy. BOC [1--4 solves this low accuracy problem, by using a comni':,
of both analog optical system and digital processor.

In this paper we present experimental results using BOC for solving systeor> (f innea:
equations. In Section 2 a comparison between astigmatic optics and waveguider li,,td ,dgebr..
processors is presented. The hardware and the software design of BOC is in Section i. ->;ct;on -
contains the experimental results of the BOC for solving a system of linear eqi:atiuns. The
conclusions are in Section 5.

2.ASTIGMATIC OPTICS AND WAVEGUIDES BASED ALGEBRA PROCESSORS

The analog optical system can be applied in many applications. This paper (:Dnce rates or.,
solving a system of linear equations. Goodman [] has introduced an astigrmatic processor to
perform matrix vector multiplications, which can also be used in a svsten. of linear ecuarion,
solver. However, the main problem that faces the arrangement in Fig. is aliunine !hc
components, to insure a uniform light distribution along the matrix plane.

Waveauides can be used to build optical algebra processors. By usinr waveguides. the
optical system can be made compact, and its alignment will be much easier than that of the
astigmatic system. The distribution of the light across the waveguide is plotted in Fig. 2. which
shows that the light is almost uniform along the waveguide. From ih practicai standpoint
waveuides are more reliable to use in these systems than the astigmatic Optc:.
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3.THIE BOC DESIGN (HARDWARE AND SOFTWARE)

3.1 BOC IARDWARE DESIGN

The BOC hardware has three main parts as shown in Fig. 3. The optical system, the.
electronic circuit, and the digital processor. The optical system consists of the fully parallel
rnatrix-vector multiplier. Light from the LED's representing the x components are spread
vertically by planner waveguides onto the columns of the matrix mask. The transmitted light is
summed row wise by using another set of planner waveguides and detected by photodiodes which
.epresent the output vector b.

The electronic circuit acts as a feedback loop to correct for the input light of the LED's,
until a solutinn is reached. The solution x will then be read and stored by the digital processor.
Fig. 4 shows the electronic circuit used for the feedback loop.

The A/D and D/A conversion from and to the electronic circuit are performed by the digital

Drocessor.

3.2 BOC SOFTWARE DESIGN

The BOC software controls the Input/Output operations. Both the matrix A and the output
vector b are read and stored by the digital processor. The vector b is then converted to analoc
voltage by a D/A converter, and it is assigned to the different ports of the electronic circuit. The
analog optical processor solves for an approximate solution due to its inaccuracy. The digital
processor reads and stores the approximate solution, xo through the A/D converter, then it
calculates the residue vector, r, as,

r=b-Ax_-A(x-x0 )=AAx (1)

Multiply Eq. (1) by a scalar s to make use of the whole dynamic range of the system. so
Eq becomes,

sr=A(&x) (2)

if the residue is not small enough, the system of linear Eq.(2) will be solved for Ax using the
analo.g optical processor and,

_lo =x°+ _ (3)

A new residue wiil be found for xl. The iteration process is continued by solving Eqs.(1)
t irough f3 until a satisfactory solution is reached.

4.EXPERIMENTAL RESULTS

In tiffs c-ctioit we present the experimental results for solving a system of linear equations
Ax=b us.ng the P.OC,where Ab, and x are all positive.

The Log of the error and that of the residue are plotted versus the number of iterations. The
error and the residue are defined as,

Error= f(k)l/ 1 j1  (4'
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Residue=1trk 1 (5)

Where 11.11, is the Enclidean norm, x is the exact solution, xk is the kth iteration solution,
and rk is the kth iteration residue.

Since we are dealing only with positive numbers in this paper, we used the absolute value of
r to solve Eq.(2), then we set:

when all the components of r are positive. And

xn+1=xn_,x(7)

if all the components of r are negative. We reject the iteration when the components of r have
different signs and take the previous one. By rejecting some iterations we are actually rejecting
some co:rections. This procedure slows down the convergence process.

In all the experiments performed, the iteration process is stopped when a 16 bit accuracy is
reached. Fig. 5 shows that the BOC started with almost 30% error and it needed 6 iterations to
converge to16 bit accuracy. In Fig. 6(a) BOC started with almost 110% error, and the number of
iterations needed was 21. Fig. 6(b) shows the Log of the residue as a function of the number of
iterations. The fluctuations depicted by Figs. 6(a} and (b) is due to the rejection method used ir
the experiments.

4-1 EFFECT OF CALIBRATION

The analog optical system error is a major factor in the rate of convergence of the BOC. If
that error is reduced, then the convergence is much faster. In order to illustrate this. the same
problem has been solved twice with two different accuracies of the optical system. The analog
optical system's error in the first time was 50%, and it was 30% in the second time. Twe: v one
iterations were needed by BOC to converge to the 16 bit accuracy for the first case tor t e
second case the number of iterations was reduced to 12. These results are plotted in Fig 7.

4.2 RELIABILITY OF THE SYSTEM

System reliability for convergence have been tested and verified by solving the same problem
several times, under different conditions. Results show that when the BOC is used. *,. solve a
problem several times, the convergence rate will not be exactly the same for all the cases.
However, the number of iterations needed by the BOC to converge to a certain accuracy is almost
the same. Fig. S shows three different paths of convergence for the same probiem. Th2 BOC
needed 13 iterations in the first run, 14 iterations in the second, and 11 in the third.

4.3 SOLUTION CONVERGENCE FOR THE SINGULAR MATRIX SYSTEM

Solving a system of linear equations with a singular matrix A is one cf the problems that
cannot be solved using conventional digital computer techniques. Singular matrices have a
condition number equal to infinity, so their inverse does not exist. also they have infinite number
of solutions. However, the BOC can be used to solve such systems 1,6. The BOC converges much
faster when A is singular, because a nonsingular matriN will have a
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unique solution. Due to the infinite solutions that a singular matrix has, the BOC produces
different solution each time we try to solve the same problem again. Fig. 9 shows the BOC
convergence for a singular matrix. o

5.CONCLUSIONS

The BOC system was built and experinentally tested. The experimental results show great
reliability of the processor in solving systems of linear equations. Overall 16 bit accuracy of the
hybrid system was achieved with an analog optical system of 30% to 50% error. Higher accuracies
of the solution can be obtained by increasing the number of iterations. The BOC also
demonstrated to solve systems of linear equations with singular matrices.

We are considering in future work, bipolar numbers, complex numbers, and using SLM for
the matrix mask.
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A BSTRA CT

A so t of Ill-posed alzebra problemns ar~e consideredI for uv ''i l(
Computer. 130C. The 130C algorithmn was shown to he capable of solvilla :!1 j 1k,
probiems. Thr-ee differelit methods of g-eneratinfz the error matrix are- comprarecl l
(ovr~ec of theP So1lution. Somec applications for the methods are introduced.

I. INTRODUICTION

Optical linlear aheebra processors,14 are introduced to prov'ide a fast ana re

soivilng linear algebra problems,. We have shown in previouv publications- -' t tha,, -,i
capable of solvim; s ' stemns of linear equations with Singular miat rices. Thle 130CWe
wve have introduced can also be used on conventional digital computers. In this paper
three different methods In generating the error matrix used in the algorithiin ,i
b)etween the different mnethods is shown in termis of the solution convergence.

In Section '2 we review the BOG algorithmi for solvinig a sys-temn of linca7
Different schernes in) zeneratingl the error matrix is gaiven in Section :3. .- \pplica*,ion
o seii nerar pr-o ems is snown in Sect ion 41. In Sect ion -5 ('Onclwl us and finii2

2. T ITE HOC ALGORITHIM

In this siect ion we rev-iew the B0C algorithirii to solve a sy-stein of hlar o
.tig-orithri origijnallyN was developed for the' B3imodial Optical ( omlputer.I3OC
s ystein. corninling hot h analog optic,, andl digital electronics to achi~e rtiY' iT9. '

lapidl for, systemns of linear equations. Thle aigorithm cail also be used oin aii Ciii 91. To
. olve svstemis witih ver-Y iii-{conditioned or sinlar mnatrices.

'I'll( lpri-oien %k- arc, interes)ted to sol ye is the basic- svsreni of linecar co ii at .

Ax =b

woheie A is n n x n matrix. x anMd b) are n I vectors A amli 1) arc I n' iKi P(1 x '

Solution of the sstem N.,- need to deternmn. The miatrix A ("IIIi 00 it net .ilv~n:: 2

'I he HOC ' aLoni.hmi Is as follows:
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(' G-tenerate the matrix A0 . which is ci.ven by

A° A+E. (2)

',.'i re E is the error matrix.

E= Cit "' .i (3

(al "'" an

and is generated using a Gaussian random number generator. with zero mean and standard
deviation, cE.

b Solve the system

.40:A0 x0 ;0;

c) Compute the residue

r b - Ax A X.

Solve the system

A0 s °Ax (6)

.x .,,, s is a constant used to utilize the dynamic range of the system. such that

sli r 1.0 (7)

S ',)rpute the refined solution
41 -o + -0

X X A(S

it fl r f . the allowable error. stop, otherwise, go to step (c) and reiterate.

In this algorithm the matrix Ao is a well conditioned matrix 4 '  If A is a singular matrix
ticn it. has at least one of its eigenvalues is equal to zero. By adding the error matrix E to A then
'i.e zfro eeenvalues of A will be shifted and the matrix Ao will have no zero eigenvalues. It is

v.) v.orth rne"t:o in here that step (a) is not necessary when using an analog optical processor.
,,w'-;5s it is dore :.aturallv.

3. GENERATING TIHE ERROR MATRIX

I r :hi: s,@t '> . :, r ro ucv other ways of i.,onerating the error matrix. E. given in Eq. 2

30 / SPIE Vo) 939 Hvb,,d Irnaqe and ,Sqnal ProCesSsng9 198R
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Also we wili compare these different methods in terms of the solution convergence of system oZ
imear equations with a singular matrix.

The error matrix. E. can be generated as given by Eq. (3). Also some of the other means 1*"
can be zenerated are

E 1
[0

[1 0 1 Fe0

E3 1 + C 2 -- 0 (1;

[n Eq. (9) the diagonal matrix is generated using Gaussian statistics.
In Fig. 1 the number of iterations required for a 16 bit solution of a 5 5 singular svstem

;)lotted in terms of the logarithm of the standard deviation, oE , of matrix L and El or the
lo-.garithm of ( of matrix F2. In Fig. 1(a) a .5 x 5 matrix with rank 4 is used, while in Fi,,i. 1 1
lhe rank of the matrix is only 1.

in - m fa I .

2 ,. i t for a r

1(h) E,.1a t h e number of iterations sg u r and E ri.i. eror ,;; eru, r o f n i rt rio r::

:,'~ir 10 7"tlne number of iterations is between 1,5 and 27. w. th t! ' , , , l u :n1 E") 1,as ,.

SPIEL Vol 9j9 Hyhr,a irmge ancy s,Q a Proc-ess~ig 119881 ' 3
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In Fl . 2 heif n unn or o! iterations reaujired for a if) bit resolution solution is pIOtto L !" Term:
IAg( :(2.or t xvu values of C." I Ihe number of iterations is 5 up to an error of i0007-1.

<Xe 1 diVciiec itfC t (Ci C2 . whlich
(;'lxt~ rrflr inatrix ii. of siii ular.

FroT tfLA reslts SnownVl inl Figs. I
1tlk 2. P ~letMeans of generating

k e''r ariX aLre (11111C Simciilar in terms
!!,L converiiece rate. It is clear that

ar einethods; is capable of /
V'''15 (t.. (j, probiemsl. I'sing ani

Au.~loosrIll 1iillit 115 to use E for
error ii iatiix. When the miatilx .A J-

ill thie anialog, processor because of
ie iniherent iiaccuracles of the processor

A0w II he rorCCel inistead of A, But_________________________________
I I Ius Ing tls aic ori r.hm on a digital0-, . - - - 0

eolmputer. we are not limited to -any, one LOG(C3/Ci)
''I t~e aloove inethods. In this case using
I, for enr tnte error matrix will Fa. 2 Number of iterations required for 16 bit

eqn~e he eas nunoe ofopeatins.resolution in terms of Log(Ci/C2) for a

5x5 m-atrix with rank=4.

4. SEMILINEAR P~ROBLEMS

Ti, cillss of probienis has a very wide range of' applications, such &,, optimiuzation problems.
ui 'rora~iiiimilage restoration., etc. in semilinear problems the system of imear equationl

'' in N! T. need to be solved for A with the following constraint

b. >0 .(13)

oSU;V.thesystem of lincar equations considered in the semilinear problems is overdetermined.
ur~orcuermnedOr with mnatrix A singular. In all these cases the system does not have a unique

.Out :.So in the iterative BOC algorithm any solution thadosntaifyE.12wllb
ewat 1(CI zero. 111til the systemn converges to a satisfactory solution.

5. CONCLUSIONS

I iw HOC aorhmis introduced and applied to solve a set of ill-posed algebra problem s.
T O' ,A :,c,,er, 'lj('e of thie solution was studied for the different methods used to generate the( error

iiL M'. 1' Lo,., in can be used1 both optical and digital comiputers.
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ABSTRACT

The Bimodal Optical Computer (BOC) is considered for Adaptive Phased Array Radar (APAr) data processing. The
effect of the errors in the BOC on the optimum weight calculations for the interference canceling are studied. Computer
simulations for five and nine element APARs are presented.

I. INTRODUCTION

The adaptive phased array radar systems provide the means for suppressing unwanted
interference signals. This is achieved by nulling the antenna pattern at the direction of the
jammers.[1-51 Many algorithms are introduced for the adaptation process and these are reviewed
by Monzingo and Miller.[2] These algorithms have large computational complexity. This makes
the adaptation process slow, especially for large size arrays.

We have introduced the bimodal optical computer (BOC) for sciving iinear algebra
rproblems.[6-7] BOC is capable of solving this class of problems with both high speed and accuracy.
As an optical hybrid system, the BOC combines between the speed and parallelism of optical
aaaiog processors and the accuracy of the digital electronics. In previous paper we have suggested
,ie implementation of the BOC for processing of the APAR's data.[8]
in this paper we study the effect of the errors involved with the BOC components on the

.erference canceling ability of the APAR. Also a comparison between the antenna pattern for an
APAR c-?mputed using the BOC with and without optical errors is presented.

1.1 Adaptive Phased Array Radar

The adaptive phased array radar system (APAR) block diagram is shown in Fig. 1. The received
signal vecor x is given by

x xd + xi +xn, (1)

where xd the desired signal,
x: =the interference signal, and
x = the thermal noise.

The received signal xi's are then multiplied by the corresponding weights wi's, and summed to give
the output signal s(t). The output signal is then compared with the reference signal r(t) to give the
error signal t (t).

f (t) = r(t)- wT x, (2)

where T denotes the transpose of the vector.
The adaptation problem for the weights can be formulated in such a way that the least mean

Presented at the 3 2nd SPIE Annual Symposium, San Diego, CA August 14-19,198, SPIE Proceedings 975-30.
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square error

E{( 2 (t)} = E{[r(t)-wTx] 2 1 (3)

is minimized, where E{ . } is the ensemble average. In the static case the least mean square error
(LMS) can be set to zero. This can be achieved by solving the system of linear equations given by
[2],

Rxx w = rxd (4)

Where Rxx = E{x xT }, and rxd = E{xd r }. So the problem for computing the optimum weights
w is reduced to the solution of a system of linear equations given by Eq. (4). The covariance matrix
R is symmetrical and usually either singular or ill-conditioned. Solving such system of equations
wt limited accuracy processor will require a very large number of iterations, which in turn
increases the computational time.

1.2 The Bimodal Optical Computer
In this subsection we review briefly the BOC algorithm which is used to solve the adaptation
roblem given by Eq.(4). Let A = Rx,, x =w, and b = rxd. Substituting in Eq.(4) will reduce it to the
llowinp

Ax = b. (5)

Which the standard format for a system of linear equations. The BOC block diagram is shown in
Fig.2. It is an optical-hybrid system. The optical analog processor is used in solving the system of
linear equations of Eq.(5) and a digital processor to refine the accuracy of the solution. The
algorithm used in solving the system of equations is given as follows:

(a) Solve Ax = b using the analog optical processor to get x.
(b) With a dedicated digital electronics processor, read xo and evaluate the residue

ro = b-Axo = AAxo  (6)

(c) Normalize r to use the dynamic range of the system.
d) Solve optica~ly the system of equations

Az = sr o , (7)
where

z = s (Axo), (8)
and

s = radix used in normalizing r.
(e) Evaluate electronically

ad x 1= x + AXo  (9)and(9
r1 = b-Ax1 . (10)

(f) If II r, 11 is small enough stop. Otherwise go back to step (c) and recycle.
There are a number of error sources in the BOC. There are reading and writing errors in x and b

and errors in writing the matrix A. Since the processor is analog, thus inherently it has a low
accuracy which is determined by the dynamic range of all of these optoelectronic devices. These
errors will affect the rate of convergence of the solution, which also depends on the condition

2
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number of the matrix A. In the following section we study the effect of these errors on the

performance of the APAR.

II. COMPUTER SIMULATION RESULTS

We have conducted a set of numerical experiments to simulate the BOC in calculating the
optimum weights for the APAR. The simulation experiments are considered with and without
errors encountered in the BOC. This is done to study the effect of the optical errors in calculating
the weights and the antenna pattern. In the followin& results we have considered the errors to be
Gaussian distributed with a standard deviation of 1% in the matrix A and the vectors x and b.

2.1 Five Element Array

In thz first simulation experiment we considered a five element adaptive phased array antenna.
The antenna elements are spaced by half a wavelength. In all the cases reported the strength of the
desired signal strength is considered to be equal to that of the jammer. in Fig.3 the antenna pattern
of the APAR is plotted in terms of the azimuth angle. The desired signal is at zero degrees. In
Fig.3(a) the antenna pattern is plotted for a five element array with one jammer at 30*. The
pattern was plotted first assuming no errors in the BOC (the continuous curve). The other three
curves are for the BOC with the error specified above for I iteration (dashed line), 2 iterations (*)
and 5 iterations (x). The antenna pattern nulls at 300. which is the Jamimer direction. The pattern
calcuiated witn only one iteration nulls also at the 30* but not as deep as the exact one, but the 2
and 5 iterations patterns null as deep as the no error curve. In Fig.3(b) the same APAR is
considered with a thermal noise of standard deviation equal to 0.1 of the desired signal strength.
The continuous curve represents the pattern obtained by the BOC with optical errors, while the
dashed line is the BOC with the errors mentioned above. The two patterns are very close except
that the dashed one is not as deep as the continuous one, with one or two extra iterations we can
expect the same null. Figs.3(c) and (d) the APAR is considered with 2 jammers at 30* and 50*.
Again the patterns in Fig.3(c) is without thermal noise, the nlls are very deep and similar with no
errors or with a practical BOC with few iterations. In Fig3(,) thermal noise is again considered.

2.2 Nine Element Array

In this set of simulation experiments we consider 9 element APAR with a number of jammers
with equal strengths to that of the desired signal which is at 0". In Fig.4(a) a jammer at 50* is
considered and no thermal noise. The pattern is plotted using the BOC with no errors and the
BOC with errors for one, and three iterations. From the pattern it is clear that the pattern plotted
using three iterations has a null as deep as that of the system with no errors. In Fig.4(b) a therml
noise of standard deviation equal to 0.1 of the dcsired signal strength is considered with a jammer
again at 50*. The antenna pattern obtained using the BOC with no errors and with errors and one
iteration are both nulling the jammer with almost the same depth. In Fig.4(c) five jammers are
considered at 10, 20, 30", 40, and 50*, and thermal with strength equal to that of the desired
signal. Again the pattern and the depth of the nulls are very similar for BOC with no errors or with
errors after few iterations.

III. CONCLUSIONS

The bimodal optical computer because of its hybrid nature is superior in speed to that of the
digital computer in solving a system of linear equations, especially for large size systems.[6] It is
shown here that the BOC is capable of determining the optimum weights for an APAR in few

3
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iterations even when their exists large inaccuracies in the optoelectronic devices used. Since only a
very small of number iterations are needed then the weights can be updated very fast which is a
must for such system.
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Fig.3 Rhe antenna pattern for a five element array is plotted in terms of the azimuth angle for
(a) one jammer at 300 and no thermal noise, (b) one jammer at 300 and thermal noise,
(c) two jammers at 300 and 500 and no thermal noise, and (d) as in (c) with thermal
noise.
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KEY TERMS To cancel triC fierference sianai and to make the signal
4 awiiie arroiis opigcai comwourn. opticai jaia ti slirht )equal to the pilot Sis nai. w~e need: to sot~e the followinp.

svstcm of breat equations for tic weighlts k

A BST-RACT
lire use of the himoaijI 0011(01 comDugfer iBOCi in igegermininq gte~Hi
.'eigfls gor an aaaogive pitasta argiv raaar is inrfoauxea. ingerieg'enre . H-

conceihi is presentea tor rmo cases. ifi Iassumine the Ogrecion ofthoe i cos 0 - )sin 11, 3)l

lum,.er t i nown ana g.1i assuminme no a riori igornwrion The effect or
l(me gamneri on thre ag-tm patternl is Shown lor uD go tour ,Wameti IH - Icos 0 .- Hsing 0

1INTRODUCTION T'he size of tis system of linear equations depecnds on the
The sensiuvttv of a signial-receiving antenna arrav svstem to number of sensors in thc arrav T-he numoer of tammers can
interferng noise sources can be reduced by suitable prociessing make the system under or overdeterrmned. both of wrucn are
of the outputs of the individual arrav elements. The orocessine time consuming algebra problems
of the output of the array system acts ats an adaptive nilternng
system (1-41 The adapuve phase array radar svstetns provide 2.X, o A Prior Informiagon is Anown. Ths is ihe most
Loe means of suppressing unwanted interference signals. Thb,, generau case wnere we assume no information atnout tammers
is achieved py nullinit the array pattern in the direcuion of The system used in mius case is shown in Figure lIbi Each of
the jamnmers. Many algonithms haye been introduced for the the n sensors receives a signal x t r) that is in turn mnulupied
adaptation process and they are reviewed byv Monzinico and by a variable weigt iw The output sisaa si t) is compared
Miller 121 with the destred signal d~t and ineir difference. the error

In tkis paper we present a new tecnique for determining sisinal t(ii. is used to determine the value of KThe output of
the weights for the adaptive array using the bimodal opucal the arrav is

computer (BOC) [5-71. The bimodal optical computer is capa-
ble of solving systems of linear equation verv rapidly with SM g= X,'(1) (4)
high accuracy. In the adaptation process we reduce the prob-
lem to a system of linear equatuons. which in turn is solved
using the BOC or

In Section 2 we review the basic theory of adaptive phased
array radlars. T'he bimodal optical computer algonthni for s( 1) WV (X.

soiviniz inc adaptation problem is presented in Section
Computer simulation results are given in Section 4 Concliu- where
sions and tinal remarks are given in Section5

2. ADAPTIVE PHASED ARRAYS W- and x i IhE
in adaptive pnased array radars the incomiung signal is de-[Hs,)i
tected by an array of sensors. The detected signal is a combi-
niation of the target signal plus Interference and noise signals For diptital sampled data
The svstem is adjusted in such a way to suppress the tnter-
fererice sianal reception without affectini whe desired signal it 11 xt 0

In :tiis section we consider the two generaJ cases of inter-
ference canceling: (11 by assumiung that the interference siznal and
direction is Known and (2) by assumrui no a pnion infornia-
lionis Knowntabout theinerference stnal j d(i T- fl) d- x( j WA i

-*,.Interference Sit'nai irection 15 Anown. When the inter- The optimum value of the weights H is ine one inat reduces
ierence signal direction is known thc 9.etgits - of the arras it -1i to zero or at least minimizes it
can Lie criosen to suppress the interference signal. Let the For N samples of data the optimum seigets satisfy the
system snok-'-n in Figure Ihat be used to demronstrate this following set of svstems of linear equations
adiaptation lectinuique. The output signal of the arrrav sin is
ziven bh, i I Ill - dill)

5i Pt H, sin "~,t * . sinti " t

.g isni " i ig * sini£~ -- W itI- at I

-sinntlwt .Hsinli -i- t. I H ~~d(

236 Y 1C R 014A V AN,-C C P r EC -Th..: 1 E 0  
Eeoiernne, t)
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Figure 1 a1sic a,3dtivc array system ,.in ia si nai and noise directions known and ibi no a ,non inlormalion asum,:,

The 1v seV, of eouauons nave n unknowns, and usuall the input data For Dracuca conslderation a smaji number o:
n ir and are nconsistent and oversDecired Ihe optimza samples is detected to ne used in delermirunne %A the c

Lion problem can De rewntten as mated value of Eq. (lui can De given 0%

SRr, (10) (1 : r . (13)

where where , is the sample covanance matrix and r ;s the

sample cross-correation ve1:or toa, are given rsR = - x (ll)

and R - \i }x )14)
K -

r E(xd (12)

and
The matnx R is called the covanance matrix. %knere E
the ensemble average

Many algontfms are introauced 121 to solse for the wernits r 5- 
\  

t ,5
in Eq. (lt Some ot tne ponuiar akaonthtn are tie least mean
square (L.MS) and the direct matrix inersion iDMI)

%e will bnefiv mention the DMi alzontnm since it leads t,-, A is te numner or sam'cs (ne DMI alonmim determine,
the aontLm introduced in trus paper Eouation (i cannot the inverse of mhe sanptce co'anance maix R and tlen
ne determuned exactly using a unated numocr oi samoie o from L 4 3 ', aluates ',

.C rROw,., A " . ; . .. " 9: 237
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3. THE BIMODAL OPTICAL COMPUTER ALGORITHM We reviw ne-e inc BOC aiconuim in soti"ng ine svstem

Convergence of either the LMIS or the DM1 alaonuims cfe Ax - b
perios on a numner of factors. the most iniponant peit the
conaition numoer of the matru RA. If the matrin R- i ;a) Solve .4% - b using me analog. opucat nrocessor to get
il-conciiuoned or singular. it either converges verv slowiv or ,

the inverse does not exist. respectively. In suchl cases other ib) With a diedicateadia ectonics processor, read x
methods might be used, but they are ienathiv and t=e con- and evaluate ine residue
sumiuna. so iflev are not suitable for a system where time is a
serv crucial element r, - b - 4s %, .'-4 =41 Ax,1 (18)

We naxe snown in previous publications 16. 71that the
DsMoidal OptICat comDuter IS capable of SolvingR such problems. jc) Normaize r, to use the dvnaenuc range of the systemn
anere the system of equations is ill-conditioned. singular. (d) Solve opticalls the system
-erstpecified. or undersnecinied. The BOC is a hvbnd system

nature. see kizure 2. It uses analog optics to solve the .41 - Tr 1i
:)roncm approximatelv but rapidly and it utilzes the digital
ciectronics to renne the solution. in an iterative scneme where

the aoaotation nroblem for inc vieignits w introduced in
'section S an ne rewnitten in tne following form. from E , -i AA.,.(0

aind s is uhe radia used in normitine

R ~ - r (lb le Evaluaie etectronicaiis

s'icn can ne .%rmtien as -Ax1

,4%- b. (17t and

uhere 'i b- 4I

4 (f) r If r.! is smail enougis. stop Otherwise, to to (ci ano
recycie

h-

tEouain I(' ,a sy4stem of iinear eouations tria can De In the followinia section we vresent Some kit ine reiinanr-y

-Olsec us;nz '!-w nimodal onticai computer .Amoniz me adt results from comDuter simulation studies o: :ie BOC :Pn

santalZr5 of u~iniz toe HO( eser troe consentionat tecnidue' processinz adaritive arras proolems
ire sneed ., ccalk~ for iayac stir arras si. consergencc of Itime
ojution ter difficuui nroniems. anl in-conditioned singular 4. SIMULATION RESULTS

,stcm% %xnicn is (tic case for moi~t of inc atnie arras, radiar Two simulation exneninents ar-e nresented in ins section in
voniemn, the nrst expenment %he used a flve element ara% and assume
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ihe directions of the iammers were known In we second
experiment a Uwo element arTa, is uscO ao no a pnon

information is assumed
In Figure 3 the fie eiement array pattern is oiotted as a

LuncUon of the anaic ,. hiure 3(a) shows twe array pattern
before acaptation. In Figure 31b) the pattern after adaoation
is shown for a jammer at 45o The array pattern after adapta-
Lion nas reformed in such a way that it nulls the iammer
signal. In Figure 31c) four iammers are considered at 45* , 80' .

120'. and 150'. The array pattern is atain reformed to null all
the jammers signal reception.

In Figure 4 the BOC was used to solve the adaptation
problem assuming no a pnon informatuon about the inter-
ference signals. Figure 44a) shows the two-element array pat-
tern before adaptation. In Figure 4(b)-(d) the pattern is
plotted for a single jammer placed at 30o, 450 . and 60 ° ,

respectively. In all these plots the array adapted to cancel the
interference signal in each of the given cases. In all of the
preceding results the tamnmer signals are considered to be of
the same strength as the desired signal. and the convergence of
the soluton obtained in less than lye tterauons. Also the
condition numbered of the R,, is between 10' and c.

S. CONCLUSIONS

The bimodal opucal computer is shown in these preltimarv
results to present a powerful mean for solving adaptive phased
array problems. We are considerng in future work larger
array sizes. recever noise, and very strong interference signals.
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